Copied to
clipboard

G = C24.445C23order 128 = 27

285th non-split extension by C24 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C24.445C23, C23.670C24, C22.4432+ 1+4, C22.3362- 1+4, C425C434C2, C23.95(C4○D4), (C23×C4).491C22, (C2×C42).104C22, (C22×C4).210C23, C23.7Q8.74C2, C23.8Q8.62C2, C23.11D4.49C2, C2.94(C22.32C24), C24.C22.69C2, C23.65C23145C2, C23.81C23119C2, C23.63C23174C2, C23.83C23108C2, C2.C42.374C22, C2.42(C22.57C24), C2.95(C22.33C24), C2.103(C22.47C24), C2.108(C22.46C24), C2.109(C22.36C24), (C2×C4).464(C4○D4), (C2×C4⋊C4).480C22, C22.531(C2×C4○D4), (C2×C22⋊C4).313C22, SmallGroup(128,1502)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C24.445C23
C1C2C22C23C22×C4C2×C42C23.65C23 — C24.445C23
C1C23 — C24.445C23
C1C23 — C24.445C23
C1C23 — C24.445C23

Generators and relations for C24.445C23
 G = < a,b,c,d,e,f,g | a2=b2=c2=d2=1, e2=c, f2=g2=cb=bc, ab=ba, gag-1=ac=ca, eae-1=ad=da, faf-1=acd, bd=db, be=eb, bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, fef-1=de=ed, df=fd, dg=gd, geg-1=bde, gfg-1=cdf >

Subgroups: 372 in 196 conjugacy classes, 88 normal (82 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, C2×C4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C24, C2.C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C23×C4, C23.7Q8, C425C4, C23.8Q8, C23.63C23, C24.C22, C23.65C23, C23.11D4, C23.81C23, C23.83C23, C24.445C23
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, 2+ 1+4, 2- 1+4, C22.32C24, C22.33C24, C22.36C24, C22.46C24, C22.47C24, C22.57C24, C24.445C23

Smallest permutation representation of C24.445C23
On 64 points
Generators in S64
(2 7)(4 5)(9 56)(10 12)(11 54)(13 15)(14 57)(16 59)(18 63)(20 61)(21 38)(23 40)(25 44)(26 28)(27 42)(29 31)(30 45)(32 47)(33 49)(35 51)(41 43)(46 48)(53 55)(58 60)
(1 22)(2 23)(3 24)(4 21)(5 38)(6 39)(7 40)(8 37)(9 42)(10 43)(11 44)(12 41)(13 46)(14 47)(15 48)(16 45)(17 50)(18 51)(19 52)(20 49)(25 54)(26 55)(27 56)(28 53)(29 58)(30 59)(31 60)(32 57)(33 61)(34 62)(35 63)(36 64)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 6)(2 7)(3 8)(4 5)(9 54)(10 55)(11 56)(12 53)(13 58)(14 59)(15 60)(16 57)(17 62)(18 63)(19 64)(20 61)(21 38)(22 39)(23 40)(24 37)(25 42)(26 43)(27 44)(28 41)(29 46)(30 47)(31 48)(32 45)(33 49)(34 50)(35 51)(36 52)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 32 24 59)(2 46 21 15)(3 30 22 57)(4 48 23 13)(5 31 40 58)(6 45 37 14)(7 29 38 60)(8 47 39 16)(9 36 44 62)(10 49 41 18)(11 34 42 64)(12 51 43 20)(17 54 52 27)(19 56 50 25)(26 61 53 35)(28 63 55 33)
(1 41 24 10)(2 54 21 27)(3 43 22 12)(4 56 23 25)(5 11 40 42)(6 28 37 55)(7 9 38 44)(8 26 39 53)(13 62 48 36)(14 51 45 20)(15 64 46 34)(16 49 47 18)(17 31 52 58)(19 29 50 60)(30 63 57 33)(32 61 59 35)

G:=sub<Sym(64)| (2,7)(4,5)(9,56)(10,12)(11,54)(13,15)(14,57)(16,59)(18,63)(20,61)(21,38)(23,40)(25,44)(26,28)(27,42)(29,31)(30,45)(32,47)(33,49)(35,51)(41,43)(46,48)(53,55)(58,60), (1,22)(2,23)(3,24)(4,21)(5,38)(6,39)(7,40)(8,37)(9,42)(10,43)(11,44)(12,41)(13,46)(14,47)(15,48)(16,45)(17,50)(18,51)(19,52)(20,49)(25,54)(26,55)(27,56)(28,53)(29,58)(30,59)(31,60)(32,57)(33,61)(34,62)(35,63)(36,64), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,6)(2,7)(3,8)(4,5)(9,54)(10,55)(11,56)(12,53)(13,58)(14,59)(15,60)(16,57)(17,62)(18,63)(19,64)(20,61)(21,38)(22,39)(23,40)(24,37)(25,42)(26,43)(27,44)(28,41)(29,46)(30,47)(31,48)(32,45)(33,49)(34,50)(35,51)(36,52), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,32,24,59)(2,46,21,15)(3,30,22,57)(4,48,23,13)(5,31,40,58)(6,45,37,14)(7,29,38,60)(8,47,39,16)(9,36,44,62)(10,49,41,18)(11,34,42,64)(12,51,43,20)(17,54,52,27)(19,56,50,25)(26,61,53,35)(28,63,55,33), (1,41,24,10)(2,54,21,27)(3,43,22,12)(4,56,23,25)(5,11,40,42)(6,28,37,55)(7,9,38,44)(8,26,39,53)(13,62,48,36)(14,51,45,20)(15,64,46,34)(16,49,47,18)(17,31,52,58)(19,29,50,60)(30,63,57,33)(32,61,59,35)>;

G:=Group( (2,7)(4,5)(9,56)(10,12)(11,54)(13,15)(14,57)(16,59)(18,63)(20,61)(21,38)(23,40)(25,44)(26,28)(27,42)(29,31)(30,45)(32,47)(33,49)(35,51)(41,43)(46,48)(53,55)(58,60), (1,22)(2,23)(3,24)(4,21)(5,38)(6,39)(7,40)(8,37)(9,42)(10,43)(11,44)(12,41)(13,46)(14,47)(15,48)(16,45)(17,50)(18,51)(19,52)(20,49)(25,54)(26,55)(27,56)(28,53)(29,58)(30,59)(31,60)(32,57)(33,61)(34,62)(35,63)(36,64), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,6)(2,7)(3,8)(4,5)(9,54)(10,55)(11,56)(12,53)(13,58)(14,59)(15,60)(16,57)(17,62)(18,63)(19,64)(20,61)(21,38)(22,39)(23,40)(24,37)(25,42)(26,43)(27,44)(28,41)(29,46)(30,47)(31,48)(32,45)(33,49)(34,50)(35,51)(36,52), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,32,24,59)(2,46,21,15)(3,30,22,57)(4,48,23,13)(5,31,40,58)(6,45,37,14)(7,29,38,60)(8,47,39,16)(9,36,44,62)(10,49,41,18)(11,34,42,64)(12,51,43,20)(17,54,52,27)(19,56,50,25)(26,61,53,35)(28,63,55,33), (1,41,24,10)(2,54,21,27)(3,43,22,12)(4,56,23,25)(5,11,40,42)(6,28,37,55)(7,9,38,44)(8,26,39,53)(13,62,48,36)(14,51,45,20)(15,64,46,34)(16,49,47,18)(17,31,52,58)(19,29,50,60)(30,63,57,33)(32,61,59,35) );

G=PermutationGroup([[(2,7),(4,5),(9,56),(10,12),(11,54),(13,15),(14,57),(16,59),(18,63),(20,61),(21,38),(23,40),(25,44),(26,28),(27,42),(29,31),(30,45),(32,47),(33,49),(35,51),(41,43),(46,48),(53,55),(58,60)], [(1,22),(2,23),(3,24),(4,21),(5,38),(6,39),(7,40),(8,37),(9,42),(10,43),(11,44),(12,41),(13,46),(14,47),(15,48),(16,45),(17,50),(18,51),(19,52),(20,49),(25,54),(26,55),(27,56),(28,53),(29,58),(30,59),(31,60),(32,57),(33,61),(34,62),(35,63),(36,64)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,6),(2,7),(3,8),(4,5),(9,54),(10,55),(11,56),(12,53),(13,58),(14,59),(15,60),(16,57),(17,62),(18,63),(19,64),(20,61),(21,38),(22,39),(23,40),(24,37),(25,42),(26,43),(27,44),(28,41),(29,46),(30,47),(31,48),(32,45),(33,49),(34,50),(35,51),(36,52)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,32,24,59),(2,46,21,15),(3,30,22,57),(4,48,23,13),(5,31,40,58),(6,45,37,14),(7,29,38,60),(8,47,39,16),(9,36,44,62),(10,49,41,18),(11,34,42,64),(12,51,43,20),(17,54,52,27),(19,56,50,25),(26,61,53,35),(28,63,55,33)], [(1,41,24,10),(2,54,21,27),(3,43,22,12),(4,56,23,25),(5,11,40,42),(6,28,37,55),(7,9,38,44),(8,26,39,53),(13,62,48,36),(14,51,45,20),(15,64,46,34),(16,49,47,18),(17,31,52,58),(19,29,50,60),(30,63,57,33),(32,61,59,35)]])

32 conjugacy classes

class 1 2A···2G2H2I4A···4P4Q···4V
order12···2224···44···4
size11···1444···48···8

32 irreducible representations

dim11111111112244
type+++++++++++-
imageC1C2C2C2C2C2C2C2C2C2C4○D4C4○D42+ 1+42- 1+4
kernelC24.445C23C23.7Q8C425C4C23.8Q8C23.63C23C24.C22C23.65C23C23.11D4C23.81C23C23.83C23C2×C4C23C22C22
# reps11122212228422

Matrix representation of C24.445C23 in GL6(𝔽5)

100000
010000
001000
003400
000010
000004
,
400000
040000
001000
000100
000010
000001
,
100000
010000
001000
000100
000040
000004
,
100000
010000
004000
000400
000010
000001
,
010000
100000
004400
000100
000030
000003
,
300000
030000
003300
004200
000003
000030
,
300000
020000
004000
002100
000001
000040

G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,3,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,4,1,0,0,0,0,0,0,3,0,0,0,0,0,0,3],[3,0,0,0,0,0,0,3,0,0,0,0,0,0,3,4,0,0,0,0,3,2,0,0,0,0,0,0,0,3,0,0,0,0,3,0],[3,0,0,0,0,0,0,2,0,0,0,0,0,0,4,2,0,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,1,0] >;

C24.445C23 in GAP, Magma, Sage, TeX

C_2^4._{445}C_2^3
% in TeX

G:=Group("C2^4.445C2^3");
// GroupNames label

G:=SmallGroup(128,1502);
// by ID

G=gap.SmallGroup(128,1502);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,560,253,232,758,723,268,1571,346,80]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=1,e^2=c,f^2=g^2=c*b=b*c,a*b=b*a,g*a*g^-1=a*c=c*a,e*a*e^-1=a*d=d*a,f*a*f^-1=a*c*d,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,f*e*f^-1=d*e=e*d,d*f=f*d,d*g=g*d,g*e*g^-1=b*d*e,g*f*g^-1=c*d*f>;
// generators/relations

׿
×
𝔽